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In this paper we outline a new particle-mesh method for rapidly rotating shallow
water flows based on a set of regularized equations of motion. The time-stepping
method uses an operator splitting of the equations into an Eulerian gravity wave
part and a Lagrangian advection part. An essential ingredient is the advection of
absolute vorticity by means of translated radial basis functions. We show that this
implies exact conservation of enstrophy. The method is tested on two model problems
based on the qualitative features of the solutions obtained (i.e., dispersion or smooth-
ness of potential vorticity contours) as well as on the increase in mean divergence
level. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The dynamics of the atmosphere is characterized by the existence of motion on two
scales: the relatively slow advection of vortical structures and the relatively fast motion of
gravity waves. The interaction between these types of motion is the subject of much current
research in geophysical fluid dynamics. We expect that their proper numerical treatment is
crucial both to understanding the motions in their own right and to obtaining meaningful
results from long time simulations, for example, in climate studies.

The complete dynamics of the atmosphere is given by the three-dimensional primitive
equation model. However, a simplified model which still retains much of the important
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dynamics of geophysical fluids is the rotating shallow water equations (SWEs)

d

dt
u = − f0u⊥ − c0 H0∇xh, (1)

d

dt
h = −(1 + h)∇x · u, (2)

where u = (u, v)T is the horizontal velocity field u⊥ = (−v, u)T ; h is the normalized layer
depth variation; H0 is the mean layer depth (i.e., the total layer depth is H = H0(1 + h));
f0/2 > 0 is the angular velocity of the reference plane; c0 > 0 is an appropriate constant
[14]; and d

dt = ∂
∂t + u · ∇x is the material time derivative.

In this paper, we consider the SWEs over a periodic domain (x, y) ∈ [0, 2π ] × [0, 2π ]
with mean layer depth H0 = 1 and Rossby deformation radius L R = √

c0 H0/ f0 = 1. This
scaling essentially leaves the Froude number

ε = 1√
c0 H0

a free parameter. We introduce the scaled layer depth variation η = √
c0 H0h and rewrite the

SWEs (1) and (2) as

ε
d

dt
u = −L−1

R u⊥ − ∇xη, (3)

ε
d

dt
η = −(1 + εη)∇x · u. (4)

We are mainly interested in problems with ε less than one.
A dynamical quantity of significant importance in geophysical fluid dynamics is the

potential vorticity (PV)

Q = 1 + εL Rζ

1 + εη
, ζ = vx − uy = ∇x × u,

which is constant along particle trajectories, i.e., d Q/dt = 0. In the sequel, we will use the
normalized PV

q = Q − 1

ε
= L Rζ − η

1 + εη
.

The importance attached to PV in atmospheric dynamics is evidenced by its central role
in quasigeostrophic theory. In extratropical regions, the terms on the right side of (3) are
nearly in balance. This motivates the definition of the geostrophic wind

ug = L R∇⊥
x η. (5)

Note that if we assume (5), then the layer depth variation η can be recovered from the PV
distribution via

(1 + εη)q = L2
R∇2

xη − η. (6)
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If we also make the assumption that 1 + εη ≈ 1, then (6) gives rise to the linear relation

η = −(1 − L2
R∇2

x

)−1
q, (7)

which is called PV inversion. Furthermore, the PV field itself is advected under the geostro-
phic flow field:

∂q

∂t
+ ug · ∇xq = 0. (8)

The combined system (5), (7), and (8) is referred to as the quasigeostrophic approxima-
tion [14].

From a computational viewpoint it is important to notice that PV serves as a main orga-
nizing quantity of geostrophic flows. Accurate advection of the PV field is therefore of pri-
mary importance. This has been demonstrated using the contour-advective semi-Lagrangian
(CASL) algorithm [3]. The CASL algorithm advects the PV field along Lagrangian particles
that delineate contour lines of constant PV. The time evolution of the divergence δ = ∇x · u
and the layer depth variation η are computed over an Eulerian grid using a hierarchy of non-
linear balance conditions [2, 12]. The contour-advection schemes have been shown to result
in a higher PV-field resolution compared to classical pseudospectral and semi-Lagrangian
methods [12].

In addition to PV conservation, another computational challenge is the coexistence of fast
(small amplitude) nonbalanced motion and slow motion in geostrophic balance [1, 9, 14].
The geostrophic wind (5) is divergence-free. In contrast, the generation of (fast) unbalanced
gravity waves is characterized by the divergence δ. In this paper, we are interested in smooth,
nearly balanced motion; i.e., we assume that

d

dt
u = O(ε0) and

d

dt
η = O(ε0)

in (3) and (4). This implies, in particular, that δ =O(ε).
One might wonder why PV and not relative vorticity ζ is used as a basic variable in

geostrophic theory. Indeed, we obtain

ζt + ug · ∇xζ = −ε−1L−1
R δ

to leading orders in ε. To close the equation, one needs an order O(ε) approximation to the
divergence δ, which is provided by (see Section 5)

δ = −εL R
(
1 + L2

R∇2
x

)−1
[ug · ∇xζ ].

Hence we obtain the vorticity equation

(
1 − L2

R∇2
x

)
ζt − L2

Rug · ∇x∇2
xζ = 0, (9)

with the geostrophic wind now determined by

ug = ∇⊥
x ∇−2

x ζ.
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The vorticity equation (9) is clearly more complex than the PV equation (8). However no
PV inversion (7) is required. This fact will be explored in the design of the new method. It
is one of the central ideas of this paper that vorticity can easily be advected along the full
equations (3) and (4).

In this paper we outline a new numerical method for the SWEs that respects the above
considerations of PV conservation and balance; the generalized enstrophies are conserved.
Additionally, the new method utilizes recent ideas on fine-scale spatial averaging. Finally,
the new method is conservative (i.e., reversible) and efficient to implement (i.e., explicit
and one-step). To accomplish these goals, we apply simplifying assumptions to the SWEs
in two steps: (i) geometric remodelling, and (ii) geometric integration.

In Step (i) (Section 2), we derive regularized SWEs under a nearly geostrophic assumption
ε � 1, in which the fine-scale velocity fluctuations are filtered out according to recent ideas
from Lagrangian mean flow theory and averaged Euler equations (see, e.g., [1] and [7]),
while still preserving the “geometric” constraints of PV, mass, and energy conservation.
The idea of filtered equations is also utilized, for example, in large eddy simulations (LESs).

In Step (ii) (Section 3), we rewrite the modified SWEs in vorticity-divergence variables
and introduce additional geostrophic assumptions to cast the resulting model in a form
suitable for reversible, explicit, one-step integration via an operator splitting—into a semi-
linear (fast) wave equation and an advection step—that takes the importance of geostrophic
balance into account and that can be implemented using an appropriate modification of
a particle-mesh (PM) [6] or particle-in-cell (PIC) method [5]. Contrary to PV contour-
advection, we advect the absolute vorticity ω = 1 + εL Rζ using radial basis functions and
Lagrangian particle dynamics. As opposed to some other Lagrangian approaches, we did
not need to regularly redistribute the particles in our numerical experiments. The semilinear
wave equation is solved over a fixed Eulerian grid.

The main feature of the new method, as demonstrated by a series of numerical experiments
in Section 5, is to capture balanced motion as well as to predict the long time dynamics of
the PV field. We show that the generalized enstrophies, which we define as

Q f =
∫

{ω f (q)} dx ∧ dy, (10)

where ω = 1 + εL Rζ is the absolute vorticity, are exactly conserved over the (x, y)-domain
for any function f (q).

2. GEOMETRIC REMODELING: A REGULARIZED SWE FORMULATION

In this section we apply geostrophic assumptions to the SWEs and reformulate them to
include advection field regularization based on Lagrangian mean theory [7]. The resulting
model retains PV, energy, and mass conservation, and the regularized velocity field satisfies
the geostrophic conditions (5) as ε → 0. The regularized system differs from (3) and (4)
by terms of order O(ε2).

The SWEs (3) and (4) can be written as an infinite-dimensional Hamiltonian system of
the form

ε

(
ut

ηt

)
=
(

−L−1
R Qez× −∇x

−∇x· 0

)(
δE/δu

δE/δη

)
, (11)
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with Hamiltonian

E = 1

2

∫
{(1 + εη)u · u + η2} dx ∧ dy. (12)

We first assume that the fluid flow is almost incompressible; i.e., we assume 1 + εη ≈ 1 in
(12). Next note that

1

2
η2 = ε−2[(1 + εη)(ln(1 + εη) − 1) + 1] + O(ε).

Furthermore, it is well known that the velocity field u develops increasingly fine structures
as time evolves. On the other hand, a truncation can only resolve spatial structures up to
a certain length scale α ∼ �x = �y. Following recent advances on averaged Euler fluid
models [7], this suggests we smooth/average the velocity field over all length scales smaller
than α. Hence we replace the Hamiltonian (12) by the modified energy

Eα = 1

2

∫ {(
S p/2

α u
) · (S p/2

α u
)+ 2ε−2[(1 + εη)(ln(1 + εη) − 1) + 1]

}
dx ∧ dy, (13)

where Sν
α denotes the operator

Sν
α = (1 − α2∇2

x

)−ν
,

and p is a positive integer. Averaged Euler models typically use p = 1. In our numerical
experiments, however, we worked with p = 1, p = 2, and p = 4. Given some spatial dis-
cretization with spatial increment �x , we set α = c�x , c ≥ 1. Hence we have α → 0 as
�x → 0, and the regularization can be thought of as part of the spatial truncation process.

Note that

δEα

δη
= ε−1 ln(1 + εη) and

δEα

δu
= S p

α u.

This suggests defining the modified equations of motion by

ε

(
ut

ηt

)
=
(

−L−1
R ωez× −(1 + εη)∇x

−∇x · (1 + εη) 0

)(
δEα/δu

δEα/δη,

)
, (14)

which are equivalent to the modified SWEs

εut = −L−1
R ω
(
S p

α u
)⊥ − ∇xη, (15)

εηt = −∇x · ((1 + εη)S p
α u
)
, (16)

where ω = 1 + εL Rζ is the absolute vorticity.
Let us introduce the modified material derivative

D

Dt
(·) = ∂

∂t
(·) + v · ∇x(·)

along the smoothed velocity field

v = S p
α u.
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Then one can extract from (15) and (16) the two continuity equations

ε
D

Dt
η = −(1 + εη)∇x · v

and

D

Dt
ω = −ω∇x · v. (17)

Hence the PV field Q = ω/(1 + εη) is still materially conserved; i.e., DQ/Dt = 0. The
total energy (13) is also conserved. The equation for the divergence becomes

εδt = L−1
R ω∇x × v + L−1

R v · ∇⊥
x ω − ∇2

xη, (18)

which, for α = 0, reduces to its standard form except for the missing −ε∇2
x(u · u)/2 term.

But note that

u · u = L2
R∇xη · ∇xη + O(ε).

Hence, if we assume nearly geostrophic balance, i.e., δ = O(ε), and replace η in the mo-
mentum equation (15) and in the continuity equation (16) by η̄ with

η̄ = η + εL2
R

2
∇xη · ∇xη,

then the resulting equations differ, for α = 0, from (3) and (4) by terms of order O(ε2). The
statement is obvious for the momentum equation, and for the continuity equation we obtain

εη̄t = εηt + ε2L2
R∇xη · ∇xηt

= −∇x · ((1 + εη)v) − εL2
R∇xη · ∇x

(
S p

α δ
)+ O(ε2)

= −∇x · ((1 + εη̄)v) + O(ε2).

In this paper, we simply identify η̄ with η.
One can again formally investigate the limit ε → 0. For simplicity, we also set p = 1 in

(13). We define the modified geostrophic wind

vg = L R∇⊥
x η,

and obtain the PV relation (ε = 0):

q = L2
RS−1

α ∇x × vg − η = −(1 − L2
R∇2

x + α2L2
R∇4

x

)
η.

PV is advected via

∂q

∂t
+ vg · ∇xq = 0.

These equations are similar to the 2D averaged incompressible Euler equations [7, 8]. See
[8] for a global existence and uniqueness result.
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Various other averaged formulations of the shallow water equations can be formulated.
We mention, in particular, the Eulerian mean rotating shallow water (EMRSW) model of
[7], which is of the form (15) and (16) with added terms in the momentum equation (15).
The resulting equations of motion, although of slightly higher complexity, can also be
implemented numerically using the techniques developed in Section 3. The advantage of
the current model is that it lends itself to efficient numerical integration using a reversible,
explicit one-step method as described in the next section.

3. GEOMETRIC INTEGRATION: THE BALANCED PARTICLE-MESH (BPM) METHOD

We now derive our new discretization method for the regularized SWEs (15) and (16)
which we call the balanced particle-mesh (BPM) method. In Section 3.1, we first rewrite
the SWEs in vorticity-divergence variables and make some additional near-geostrophy
assumptions that simplify the coupling of the divergence and layer depth equations. Next,
in Section 3.2 we discretize in time using a reversible, explicit, one-step splitting. Finally,
in Section 3.3 we define the spatial discretization. Although we lose exact conservation of
PV and energy in the following manipulations, we will see that the final method exactly
conserves the generalized enstrophies (10).

3.1. The SWEs Near Geostrophic Balance

Let v̄ denote the divergence-free part of the velocity field v and let us introduce the
balanced layer depth variation

ηg = ηg(ω) = −L−1
R ∇−2

x ∇x · (ωv̄⊥), (19)

which corresponds to ∇x · ut = δt = 0 in (18) under the assumption of δs = ∇x · v = 0.
We next reformulate the SWEs (15) and (16) in terms of (ω, δs, η) under the assumption

δs =O(ε) and η − ηg =O(ε) (near geostrophic balance). Since

∇2
xη

g = −L−1
R ∇x · (ωv⊥) + O(ε2),

we obtain

εδs
t = −S p

α ∇2
x(η − ηg)

up to terms of order O(ε2) which we ignore. In a similar manner, one can simplify the
continuity equation (16) to

εηt = −∇x · ((1 + εηg)v).

Hence, the transformed system of equations consists of a semilinear wave equation of
the form

εηt = −(1 + εA(ω))δs − εg(ω), εδs
t = −S p

α ∇2
x(η − ηg(ω)), (20)

together with the continuity equation (17) and the diagnostic relation (19).
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The idea for numerical time-stepping is to represent absolute vorticity ω in terms of radial
basis functions and to solve (17) using Lagrangian particles advected along the velocity
field v. The wave equation in (δs, η) is truncated by a pseudospectral (PS) method over an
Eulerian grid. The details will be described in the following subsections.

3.2. A Fractional Time-Stepping Method

The equations of motion in (ω, δs, η) are first split into an Eulerian part (20) and a
Lagrangian part in which (17) is solved along the flow of

D

Dt
x = v, vt = a, (21)

where a is the Eulerian particle acceleration

a = −ε−1S p
α

[
L−1

R ωv⊥ + ∇xη
]
.

To integrate (21) and (17), we introduce M Lagrangian (moving) particles with location
{Xk} and velocity {Vk}. Let us denote the Lagrangian particle positions at time level tn+1/2

by Xk
n+1/2 and the particle velocity at tn by Vk

n . In Section 3.3, we describe a radial basis
function approach to obtain the vorticity ωn+1/2 at time level tn+1/2 knowing the particle
positions {Xk

n+1/2}. Hence let us assume for now that ωn+1/2 is known.
Then the wave equation (20) is discretized in time via the time-symmetric discretization

δs
n+1/2 = δs

n − δt

2ε
S p

α ∇2
x

(
ηn − η

g
n+1/2

)
,

ηn+1 = ηn − δt

ε

{(
1 + εA

(
ωn+1/2

))
δs

n+1/2 + εg
(
ωn+1/2

)}
, (22)

δs
n+1 = δs

n+1/2 − δt

2ε
S p

α ∇2
x

(
ηn+1 − η

g
n+1/2

)
.

We would like to point out that a smaller time step δt/K can be applied to the wave
equation (20), effectively leading to a multiple-time-stepping method; i.e.,

δs
n+ i+1/2

K
= δs

n+ i
K

− δt

2εK
S p

α ∇2
x

(
ηn+ i

K
− η

g
n+1/2

)
,

ηn+ i+1
K

= ηn+ i
K

− δt

εK

{(
1 + εA

(
ωn+1/2

))
δs

n+ i+1/2
K

+ εg
(
ωn+1/2

)}
,

δs
n+ i+1

K
= δs

n+ i+1/2
K

− δt

2εK
S p

α ∇2
x

(
ηn+ i+1

K
− η

g
n+1/2

)
,

for i = 0, . . . , K − 1. This approach could be combined with the averaging ideas presented
in [11].

Once δs
n+1/2, ωn+1/2, and ηn+1/2 = (ηn+1 + ηn)/2 are known, the smoothed Eulerian

particle acceleration,

an+1/2 = −ε−1S p
α

[
L−1

R ωn+1/2vn+1/2 + ∇xηn+1/2
]
,

can be computed using the half-step velocity field

vn+1/2 = ∇⊥
x ∇−2

x S p
α ζn+1/2 + ∇x∇−2

x δs
n+1/2,

where ζn+1/2 = ε−1L−1
R (ωn+1/2 − 1).



BALANCED PARTICLE-MESH METHOD 415

The smoothed advection velocities vn on the Eulerian grid are now updated via

vn+1 = vn + δtan+1/2

and then mapped onto the particles via a simple bilinear interpolation3 to yield Vk
n+1. Finally,

the Lagrangian particle positions are updated via

Xk
n+3/2 = Xk

n+1/2 + δtVk
n+1.

3.3. A Spatial Truncation and Conservation of Enstrophy

Since we work with double periodic boundary conditions, we can apply a standard
pseudospectral discretization to truncate the equations (20). We will denote the number of
Fourier modes in each spatial dimension by N ; i.e., �x = �y = 2π/N .

The absolute vorticity ω satisfies a continuity equation of the form

ωt + ∇x · (ωv) = 0.

Hence, following the idea of smoothed particle hydrodynamics (SPH) [13], we assign each
Lagrangian particle a vorticity density {�k} and approximate ω at an Eulerian location x
via the interpolation formula

ω
(
x, tn+1/2

) =
∑

k

�kψ
(∥∥x − Xk

n+1/2

∥∥2)
, (23)

where ψ(z) ≥ 0 is an appropriate radial basis function and Xk
n+1/2 is the kth particle position

at tn+1/2.
Let us explain this approach in more detail [15]. We assume, for simplicity, that

ω(x, t) =
∑

k

�kψ(‖x − Xk(t)‖2) > 0.

Then each particle contributes the fraction

ρk(x, t) = �kψ(‖x − Xk(t)‖2)

ω(x, t)

to the total vorticity. These fractions form a partition of unity; i.e.,

∑
k

ρk(x, t) = 1.

Hence they can be used to interpolate data from the particle locations to any x. In particular,
we define a continuous Eulerian velocity field

v(x, t) =
∑

k

ρk(x, t)Vk(t),

3 One could use a higher order interpolation, but since the advection velocity field is smoothed anyway, we
found bilinear interpolation to be sufficient for the resolutions considered.
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and a vorticity flux density

ω(x, t)v(x, t) =
∑

k

�kψ(‖x − Xk(t)‖2)Vk(t).

Using dXk/dt = Vk , it is now easily verified that

∂

∂t
ω(x, t) + ∇x · (ω(x, t)v(x, t)) = 0.

The same argument can be used to derive conservation laws for the generalized enstrophy
densities ω f (q). We associate with each particle a PV value of qk . This gives rise to
generalized Eulerian PV fields

f (q)(x, t) =
∑

k

f (qk)ρk(x, t)

and the approximation

ω(x, t) f (q)(x, t) =
∑

k

(�k f (qk))ψ(‖x − Xk(t)‖2).

Hence we obtain

∂

∂t
{ω(x, t) f (q)(x, t)} = −

∑
k

∇x · {(�k f (qk))ψ(‖x − Xk(t)‖2)Vk(t)},

and exact conservation of the generalized enstrophies (10) under the given periodic boundary
conditions.

Note that the BPM method does not exactly satisfy the relation

ω = (1 + εη)Q, Q = 1 + εq.

However, since the scaled layer depth

H = 1 + εη

satisfies a continuity equation, one can apply the approximation

H(x, t) =
∑

k

mkψ(‖x − Xk(t)‖2),

where {mk} are appropriate constants. Then, upon introducing the fractions

ρk(x, t) = mkψ(‖x − Xk(t)‖2)

H(x, t)

and the generalized Eulerian PV fields

f (Q)(x, t) =
∑

k

f (Qk)ρk(x, t),
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where Qk = 1 + εqk , we obtain the approximation

H(x, t) f (Q)(x, t) =
∑

k

(mk f (Qk))ψ(‖x − Xk(t)‖2).

Obviously all of the generalized enstrophy densities again exactly satisfy conservation laws.
Note that

ω(x, t) = H(x, t)Q(x, t) =
∑

k

�kψ(‖x − Xk(t)‖2),

with �k = mk Qk . The time-stepping of the BPM method can still be applied with only the
modification that (22) reduces to

δs
n+1 = δs

n − δt

ε
S p

α ∇2
x

(
ε−1Hn+1/2 − η

g
n+1/2

)
and

Hn+1/2(x) =
∑

k

mkψ
(∥∥x − Xk

n+1/2

∥∥2)
,

as well as

ωn+1/2(x) =
∑

k

(mk Qk)ψ
(∥∥x − Xk

n+1/2

∥∥2)
.

However, the idea of multiple-time-stepping and averaging seems more difficult to apply
to this modified BPM scheme.

4. A PSEUDOSPECTRAL LEAPFROG–TRAPEZOIDAL DISCRETIZATION

For comparison purposes, we now describe a standard pseudospectral (PS) discretization
of the modified SWEs (15) and (16). Let us introduce w = (uT , η)T ∈ R3 and write (15)
and (16) in the abstract form

wt = ε−1Aw + f (w), A =
[

−L−1
R S p

α ez× −∇x

−S p
α ∇x· 0

]
. (24)

Spatial derivatives are computed in Fourier space using an FFT, and the product of any
two functions is computed in physical space. The truncation is implemented such that the
finite-dimensional system exactly conserves an approximation to the total energy.

The time discretization is done using the leapfrog method for advection and the trape-
zoidal rule for the linear wave part (LF/TR):

wn+1 − wn−1

2�t
= ε−1A

wn+1 + wn−1

2
+ f (wn). (25)

This time-symmetric two-step method is started with one time step of an analogous im-
plicit/explicit Euler step of size �t/2K , followed by K stationary applications of (25), each
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time restarting from the initial condition and doubling the step size. We used K = 10 in the
numerical experiments.

To obtain a smooth PV field it is usually necessary to include a hyperviscosity term in
the momentum equation, replacing (15) with

εut = −L−1
R ωv⊥ − ∇xη + ν

(
∇2

x

)3
u, (26)

where the viscosity coefficient is taken to be

ν = 100εQ̄

(N/2)6
, max

x
|Q(x)| ≤ Q̄.

The hyperviscosity term is discretized in time using implicit Euler differencing.

5. NUMERICAL EXPERIMENTS

We consider a domain (x, y) ∈ [0, 2π ] × [0, 2π ] with periodic boundary conditions.
We use f0 = 2π and c0 = 4π2. The mean layer depth is H0 = 1. These parameter values
correspond to a Rossby deformation radius of L R = 1 and a Froude number of ε = 1/(2π).
The latitude θ is chosen such that one rotation of the plane (one “day”) in physical time
corresponds to one time unit in the computational model (i.e., sin θ = 1/2).

The initial conditions are defined as follows. We first introduce a PV field q̄. See below
for specific choices. This field is then used to provide an initial layer depth perturbation via

η̄ = ε−1

(
1

1 + εq̄
− 1

)
+ k0,

where the constant k0 is chosen such that η has a mean value of zero. The initial (purely
geostrophic) velocity field is defined by

u = L R∇⊥
x η̄ and v = S p

α u.

Next we define the (balanced) initial layer depth variation

η = −L−1
R ∇−2

x ∇x · (ωv⊥).

These initial values finally imply a PV field q = (L Rζ − η)/(1 + εη) and η − ηg = δs = 0.
The Lagrangian particles are initially placed on a uniform grid.

The following diagnostic variables are all evaluated over gridded Eulerian variables
{ηi j }, {ui j }, {vi j }, etc. We define the discrete total energy as

Eα(tn) = L2

2N 2

∑
i, j

ui j (tn) · vi j (tn) + 2ε−1[(1 + εηi j (tn))(ln(1 + εηi j (tn)) − 1) + 1],

where L = 2π is the domain length and N is the number of Fourier modes in the x and y
directions. We monitor the relative error in the total energy

δEα(tn) = Eα(tn) − Eα(0)

Eα(0)
.
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We also compute the (approximate) L2-norm of the smoothed divergence field {δs
i j },

〈δs〉2 = L

N

(∑
i j

(
δs

i j

)2

)1/2

,

as a measure of the ageostrophic component in the solution. Furthermore, one can define
a balanced divergence field δsg to order O(ε) in the following manner [10]. Differentiate
equation (18) with respect to time and multiply through by ε. This yields

ε2δt t = −ε∇2
xηt + εL−1

R S p
α ζt + O(ε2)

= ∇2
x

(
δs + ε∇x · (ηvg)

)− L−2
R S p

α

(
δs + εL R∇x · (ζvg)

)+ O(ε2).

Next we ignore all terms of orderO(ε2) and take note of vg · ∇xη = 0 as well as ∇x · vg = 0
to obtain the defining relation(

1 − L2
R∇2

xS−p
α

)
δsg = −εL Rvg · ∇xζ = −vg · ∇xω.

Thus we also monitor the (approximate) L2 norm of the unbalanced divergence {δsag}i j =
{δs − δsg}i j .

We used the time-stepping method (22) for the Eulerian wave part with a time step of
δt = 1/N , (N is the number of Fourier modes) and a radial basis function

ψ(r2) =
(

1

(r/r0)2 + c2

)4

,

where r0 = 2�x and c = 1, for the vorticity advection. A cut-off radius of rc = 2r0 was
applied to limit the computational complexity in the summation (23).

The overall scheme was implemented using MATLAB and mex-subroutines for comput-
ing the interpolation operators and the radial basis functions over the Lagrangian particle
locations.

5.1. Experiment A. Balanced Two-Vortex Interaction

As a simple test case, we define a PV field as a sum of Gaussian pulses

q̄(x, y) =
l∑

�=1

α� exp(−β�{(x − x�)
2 + (y − y�)

2}).

For this experiment we choose l = 2 and

α1 = 1, β1 = 12/L , x1 = 0.5, y1 = 0.5,

α2 = 1, β2 = 12/L , x2 = −0.5, y2 = −0.5.
(27)

This field, representing two positively oriented vortices that are initially separated, is used
to initialize the other variables as described in the previous section.

We first investigate the influence of the smoothing parameter α and the exponent p by
performing a sequence of experiments over a time interval t ∈ [0, 10] using the BPM method
with N = 64 Fourier modes in each spatial direction and M = 16N 2 Lagrangian particles.
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FIG. 1. Experiment A: PV field at t = 10 for various values of α and p in (13).

The smoothing effect of the regularized formulation can be clearly seen from Fig. 1. But
it is also apparent that choosing α too large can have an impact on the large scale rotation
rate of the vortex pair.

The simulation is now repeated over a time interval t ∈ [0, 15] using an Eulerian grid with
N = 128 Fourier modes in each spatial direction. We use M = 36N 2 Lagrangian particles
and a smoothing length α = 2�x . We set p = 2 in (13). The time evolution of the PV field
can be found in Fig. 2 and diagnostic results in Fig. 3. The initial energy is Eα = 0.6911.
Note the excellent conservation of the unbalanced divergence.

5.2. Experiment B. Barotropic Instability

As a second experiment, we consider a barotropic instability as a more challenging test
for our method. In particular, we use

q̄(x, y) = 4ye−2y2
(1 + 0.1 sin(2x)).

The layer depth variation, velocity, and PV field are then obtained as described above.
The simulation is run over a time interval t ∈ [0, 15] using an Eulerian grid with N = 128

Fourier modes in each spatial direction. The initial energy is Eα = 5.6117.

5.2.1. The BPM method. We use M = 36N 2 Lagrangian particles and a smoothing
length α = 4�x . We set p = 2 in (13). The time evolution of the PV field can be found
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FIG. 2. Experiment A: PV field from the BPM method.

in Fig. 4 and diagnostic results in Fig. 3. Note again the excellent conservation of the
unbalanced divergence.

5.2.2. The PS method. We used the same number of Fourier modes and the same
smoothing parameters. The PS method (25) was found to generate a large amount of noise
in the PV field when integrated without hyperviscosity. Added hyperviscosity, as described
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FIG. 3. Diagnostics for the BPM and LF/TR methods. The left column shows relative errors in energy (and
enstrophy Q2 for the PS method) and the right column the L2 norm of the divergence field.

in Section 4, improved the performance of the scheme. The time evolution of the PV field
is shown in Fig. 5. It is quite apparent that the added hyperviscosity smears out some of the
finer structures in the PV field.

The generalized enstrophies (10) are exactly conserved for the BPM method. This is not
the case for the PS method and we monitor the relative error in the enstropy Q2, which we
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FIG. 4. Experiment B: PV field from the BPM method.

discretize by

Q2(tn) = L2

N 2

∑
i, j

ωi j (tn)qi j (tn).

Conservation of enstrophy, energy, and balance can be seen in Fig. 3. Note the excellent
conservation of energy with a relative error of less than 10−4 at t = 15. The divergence field
shows an almost identical behavior to the results from the BPM method.
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FIG. 5. Experiment B: PV field from the LF/TR method with added hyperviscosity.

6. CONCLUSIONS

Standard pseudospectral spatial discretization combined with an LF/TR time discretiza-
tion is unsuitable, in general, for long time simulations of geophysical flows due to the
artificial measures required to keep them stable [4, 3].

In this paper we derived a set of regularized shallow water equations and applied two dif-
ferent discretization methods. The application of the LF/TR Method to the pseudospectral
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approximation of the regularized equations still requires the application of hyperviscosity
which eliminates fine structures in the PV field. However, the method conserves energy
and balance very well, requires a minimum number of FFTs, and is easy to implement.
The newly proposed balanced particle-mesh method shows very promising results in term
of PV advection and conservation of balance. A pseudospectral discretization of the semi-
linear wave equation (20) requires about the same number of FFTs as the pseudospectral
discretization of (15) and (16). However, we also have to update the particle locations and
to evaluate the absolute vorticity using the radial basis function approximation. We expect
that the application of multiple-time-stepping and averaging [11] will allow the use of larger
time steps for the particle advection.

One should also carefully investigate the effect of various types of radial basis functions
and the effect of the cut-off radius on the approximation properties. This also includes the
implementation of rapid evaluation strategies for (23).

We believe that a slightly reformulated version of the BPM method would be possible
for nearly incompressible (small ε) nonrotating flows. This involves taking the formal limit
L R → ∞ in this paper. In this case, the general approach described is suitable for adap-
tation to spherical geometry. The Eulerian grid functions should be expanded in spherical
harmonics to avoid difficulties at the pole, and the Lagrangian advection can be handled by
standard methods for constrained dynamics.

The results could also be extended to the primitive equations [14]

ε
d

dt
u = −L−1

R u⊥ − ∇x B,

ε
d

dt
η = −(1 + εη)∇x · u,

0 = η + Bθθ ,

where x = (x, y)T , θ is the potential temperature, u = (u, v)T ∈ R2 is the velocity field, and
B is the pressure.
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